
Universidade de Aveiro 
2010 

Departamento de Engenharia Mecânica 

Jorge Manuel Soares 
de Almeida 
 

Seguimento de objectos dinâmicos com oclusão 
usando dados laser  
 
Target tracking using laser range finder with 
occlusion 

 

 

 





Universidade de Aveiro 
2010 

Departamento de Engenharia Mecânica 

Jorge Manuel Soares 
de Almeida 
 

Seguimento de objectos dinâmicos com oclusão 
usando dados laser  
 
Target tracking using laser range finder with 
occlusion 

 Dissertação apresentada à Universidade de Aveiro para cumprimento dos 
requisitos necessários à obtenção do grau de Mestre em Engenharia Mecânica, 
realizada sob a orientação científica do Dr. Vitor Santos, Professor Associado 
do Departamento de Engenharia Mecânica da Universidade de Aveiro 
 

 





  

  

 Obrigado por tudo Beta 
 

 





  

  

o júri  
 

Presidente Prof. Doutor Robertt Angelo Fontes Valente 
professor auxiliar da Universidade de Aveiro 

  
 

 Prof. Doutor Urbano José Carreira Nunes 
professor catedrático da Universidade de Coimbra 

  
 

 Prof. Doutor Vitor Manuel Ferreira dos Santos 
professor associado da Universidade de Aveiro 

  
 

 





  

  

Agradecimentos 
 

Em primeiro lugar gostaria de agradecer ao Professor Doutor Vítor Santos pela 
orientação e pela constante motivação. 
 
Queria também prestar um especial agradecimento ao Miguel Oliveira e ao 
Doutor Ricardo Pascoal pela disponibilidade, críticas e sugestões que me 
ajudaram em muito a melhorar o meu trabalho. 
 
Queria agradecer aos meus colegas de mestrado Bruno Andrade, Luís 
Rodrigues e Luís Pereira e a toda a equipa do Atlas em especial ao David 
Gameiro e ao Procópio Stein pelo companheirismo e boa disposição.  

 





  

  

palavras-chave 
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Resumo 
 

Este trabalho apresenta uma técnica para a detecção e seguimento de 
múltiplos alvos móveis usando um sensor de distâncias laser em situações de 
forte oclusão. O processo inicia-se com a aplicação de filtros temporais aos 
dados em bruto de modo a eliminar o ruído do sensor seguindo-se de uma 
segmentação em várias fases com o objectivo de contornar o problema da 
oclusão. Os segmentos obtidos representam objectos presentes no ambiente. 
Para cada segmento um ponto representativo da sua posição no mundo é 
calculado, este ponto é definido de modo a ser relativamente invariante à 
rotação e mudança de forma do objecto. Para fazer o seguimento de alvos 
uma lista de objectos a seguir é mantida, todos os objectos visíveis são 
associados a objectos desta lista usando técnicas de procura baseadas na 
previsão do movimento dos objectos. Uma zona de procura de forma elíptica é 
definida para cada objecto da lista sendo nesta zona que se dará a 
associação. A previsão do movimento é feita com base em dois modelos de 
movimento, um de velocidade constante e um de aceleração constante e com 
aplicação de filtros de Kalman. O algoritmo foi testado em diversas condições 
reais e mostrou-se robusto e eficaz no seguimento de pessoas mesmo em 
situações de extensa oclusão. 
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Abstract 
 

In this work a technique for the detection and tracking of multiple moving 
targets in situations of strong occlusion using a laser rangefinder is presented. 
The process starts by the application of temporal filters to the raw data in order 
to remove noise followed by a multi phase segmentation with the goal of 
overcoming occlusions. The resulting segments represent objects in the 
environment. For each segment a representative point is defined; this point is 
calculated to better represent the object while keeping some invariance to 
rotation and shape changes. In order to perform the tracking, a list of objects to 
follow is maintained; all visible objects are associated with objects from this list 
using search techniques based on the predicted motion of objects. A search 
zone shaped as an ellipse is defined for each object; it is in this zone that the 
association is preformed. The motion prediction is based in two motion models, 
one with constant velocity and the other with constant acceleration and in the 
application of Kalman filters. The algorithm was tested in diverse real 
conditions and shown to be robust and effective in the tracking of people even 
in situations of long occlusions. 
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Chapter 1  

Introduction 

Multi target tracking problem is a major issue in many applications. In indoors, target 

tracking can be useful in security applications like personal access control, or 

optimization problems like people motion flow in a mall (Zhao and Shibasaki, 2005). 

Another application for both indoors and outdoors situations is to assist mobile robots; 

by using tracking, object velocities can be extracted to then be used to implement 

advanced path planning and collision avoidance algorithms in mobile robots. Besides 

the implementation of robot path planning, this information can be used to assist human 

driven vehicles. Knowledge of other objects behavior and speed is paramount to the 

safety of any mobile agent and the world surrounding it. This is evident if one thinks of 

the agent has being a car. In order to drive safely in a common road the driver must be 

able to rapidly assess other cars motion, pedestrian motion and the motion of everything 

else present in the road. This information is used to determine if the driver can enter a 

road or pass over a crosswalk, but it is also used to avoid dangerous situations that could 

result in a crash. As so, one could think of a safety mechanism that refrains human 

commands if those commands put the vehicle at risk; this is just one simple example of 

the use of knowledge about the other moving agents among many more such simple 

applications that could greatly improve road safety. Outside roads, vehicles like electric 

wheelchairs could also be made autonomous or semi-autonomous, these vehicles would 

face problems that would require precise knowledge of other mobile agents like people 

or animals or even other autonomous vehicles. 

In this work, an algorithm capable of providing the position and velocity of all objects 

in the vicinity of the sensor is presented. To accomplish the tracking a laser range 

sensor is used; this type of sensor presents some advantages over more common sensors 

like cameras but also have some disadvantages. The algorithm proposed is intended to 

be used in indoors situations as well as outdoors. The use of a laser sensor brings 

several issues that must be overcome to a successful tracking. In a multi target tracking 



2 Chapter 1. Introduction 

 

application, targets are free to enter or leave the workspace, so the application must be 

able to take into account the constantly varying number of targets. Not all new 

measurements correspond to objects, as some of them belong to clutter; the laser sensor 

can also fail to detect a target especially near the laser maximum range. With this kind 

of sensor, only a 2D planar cross section of the targets is visible; therefore the target 

shape, size and pose may change very rapidly over time. Measurement error is also a 

significant problem with laser data; this issue is once again more relevant near the laser 

maximum range. One of the biggest problems with any line of sight sensor is occlusion; 

in this the laser range finder is no different. In a dynamic environment objects often 

occlude each other; per example, if the application must track persons in an outdoors 

environment, objects like building columns, trees, trash cans and many others, create 

large occlusion areas, any person moving in the sensor range may enter these occlusion 

areas. Although there are some occlusions that are impossible to overcome, temporary 

occlusions are not and must be overcome for a reliable and robust tracking. All these 

factors limit greatly the techniques to exploit, and make it difficult to identify objects 

with high certainty. The main aim of this work is to develop an algorithm capable of 

perform robust multi target tracking mitigating the problems of occlusion. 

The developed algorithm is based on a solution that uses a motion prediction based data 

association mechanism augmented with heuristic rules and uses linear Adaptive Kalman 

Filter (AKF) to overcome temporary occlusions. 

This work is inserted into the ATLAS project (Oliveira et al., 2009) of the Department 

of Mechanical Engineering of the University of Aveiro. The ATLAS project started 

with the aim of participating in autonomous mobile robots competitions but has of late 

evolved into real road vehicles with the goal of developing new Advanced Driver’s 

Assistance Systems (ADAS). The work developed here is therefore intended to be 

incorporated into these systems, in order to provide accurate perception of movements 

in the vicinity of the ego-car. 

Some of the work developed here was already submitted and accept for publication in 

the Controlo’2010 9th Portuguese Conference in Automatic Control under the title 

Laser-based Tracking of Mutually Occluding Dynamic Objects. 
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Laser rangefinder 

Today there are many laser brands and options available in the field of robotics, such as, 

indoors, outdoors, or dedicated to a particular system. The laser used in this work is a 

Hokuyo UTM-30LX, which is a general purpose laser suited for use in robotics 

applications. It presents a maximum range of 30 m and an angular resolution of 0.25° 

operating at a scan rate of 40 Hz, the laser has a detection angle of 270°. 

This kind of sensor offer some advantages over more common vision systems. When 

performing tacking with vision systems two main problems occur, determining the 

position of the object and segmentation of objects. The first problem can be overcome 

using stereo vision or assuming a particular object size but these techniques are 

unreliable; in contrast, determining the position of an object is trivial using laser data. 

Segmenting objects from their background is also a big problem in vision systems but in 

laser systems due to their high accuracy this task is simpler (but not trivial, as objects 

that are close together may be hard to separate). But unlike a vision system the laser 

data contains little information: range, angle and in some cases reflectance; with these 

limitations much of the techniques that are employed in vision cannot be used with laser 

data. 

1.1 Laser rangefinder intrinsic operation 

A laser rangefinder (also denominated LIDAR) is an active optical position 

measurement sensor. The device emits laser pulses that are reflected by objects in the 

environment, the reflected pulses are detected by the device; the time delay between 

transmission of a pulse and detection of the reflected signal is used to determine the 

range to that object, this method is based on the Time Of Flight (TOF) principal (there 

are other techniques used to detect the range to the target, but TOF is the most 

common). In a scanning laser rangefinder the mechanical motion of a scanning mirror 

directs sequential measurement pulses in different directions, creating a 2D 

representation of the surrounding environment, an additional rotating axis will allow for 

a complete 3D scan. Some laser sensors are capable of performing multiple detections 

for each pulse; using this technique one can detect a foreground object with a faint 

reflection and a background object with a strong reflection. This technique is useful to 

detect and overcome the detection of rain or in topographical application to detect the 

ground vegetation; in these applications the LRF can detect both the ground floor and 
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the vegetation such as trees or bushes. In robotic applications with direct contact with 

persons, the laser beam cannot be harmful to the human beings (Class 1, eye-safe); as 

such the laser presents a high divergence and low power. In other applications the laser 

can be of a higher class and as such present higher detection range. 

1.2 Problems 

When performing tracking, the LRF data presents several problems that must be 

attended. As with all line of sight sensors the LRF is sensitive to occlusion, for instance, 

if a small objects moves in front of a larger background object; this occlusion will cause 

a false movement of the background object boundary. Another problem occurs when 

there’s a discontinuity in range; on the transition from the nearer object to the farther 

one some points appear with intermediate ranges. This causes error in the detection of 

the object end points and may cause data segmentation problems as the two objects may 

be grouped together. 

The LRF is also sensible to weak returns as some objects reflect poorly the laser light. 

For instance, black cars are typically invisible to the scanner and can only be detected at 

very close ranges. High angles of incidence of the laser beam with environment objects 

also present a problem as the return light is very small and at very high angles the laser 

light maybe completely reflected away from the sensor making the object invisible (Fig. 

1). 
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Fig. 1. The Laser stops detecting the wall in the blue marked zone.

1.3 Other applications for LRF

In the field of robotics the LRF are commonly also used to perform SL

2007) and can also be used to detect and classify objects (mainly pedestrians

(Oliveira et al.; Premebida et al., 2009)

topographic reconstruction using airborne laser

reconstruction (Stockdonf et al., 2002)

and resource management (Andersen et al., 2005)

applications have a much longer range than 

laser class is also much higher (not eye

Fig. 2. Airborne LIDAR system allows the
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Other applications for LRF 

In the field of robotics the LRF are commonly also used to perform SLAM (Wang et al., 

and can also be used to detect and classify objects (mainly pedestrians

(Oliveira et al.; Premebida et al., 2009). As mentioned previously, LRF are used in 

topographic reconstruction using airborne lasers (Fig. 2), one typical use is the shoreline 

(Stockdonf et al., 2002) or tree canopy analysis for forest fire research 

(Andersen et al., 2005). The kind of lasers used in these 

applications have a much longer range than those used in robotic applications but the 

laser class is also much higher (not eye-safe). 

 
. Airborne LIDAR system allows the mapping of a large ground area (Reutebuch et al., 2005)
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), one typical use is the shoreline 

or tree canopy analysis for forest fire research 

The kind of lasers used in these 

those used in robotic applications but the 

(Reutebuch et al., 2005). 
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Fig. 3. 3D reconstruction of New York City in 27 September 2001 rendered by the US Army. (National 

Oceanic and Atmospheric Administration, U.S. Department of Commerce) 

3D reconstruction of objects and environments is an important topic in many areas such 

virtual museums, game and entertainment industry, architecture, virtual reality, 

archaeology, etc. (Dias et al., 2006). In these applications the LRF is a primary tool, due 

to its dense and accurate measurements. This technology is also used in sports; for 

example, many professional golf players employ linear LRF to measure distance to 

holes (Fig. 4), these LRF are more limited than 2D or 3D equipments but are also much 

more affordable. Some of the LRF available can also supply the velocity of targets; 

these sensors can be used by law enforcement agents to detect law infringements by 

road vehicles (Samuels et al., 1992). 

 
Fig. 4. Hand laser range finder used by Golf players (Bushnell). 
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Chapter 2  

State of the art 

Much work has been developed on the subject of multi target tracking over the past few 

decades (Blackman and Popoli, 1999). There’s and extensive number of different 

approaches to tackle this problem, only the ones that occur more frequently in literature 

will be referenced here. One typical way of performing multi target tracking is to use 

cameras and computer vision. This approach has been extensively studied and many 

different techniques have been developed, these techniques will not be exploited in this 

work since we use a laser range finder; a survey on vision based object tracking is found 

in (Yilmaz et al., 2006). 

Laser tracking has been employed mainly in two different applications: pedestrian 

tracking with static sensors and road vehicle tracking from a moving platform. The 

typical implementation contains the following main steps: data association, motion 

estimation and prediction. To perform data association, several different methodologies 

exist, and are normally based in some kind of object reconstruction from measurements. 

A typical data association algorithm is the Multi Hypothesis Tracking (MHT) (Reid, 

1978); in this technique multiple associations are propagated over time instead of just 

the most likely. This allows for a recombination of previous associations based on some 

criteria. This algorithm is not restricted to data association, as some authors use it to 

propagate object classification hypothesis or object morphology hypothesis. The main 

issue with this algorithm is the exponential growth of number of hypothesis; in order to 

make this algorithm feasible, pruning and gating techniques are employed. These 

techniques transform the initial optimal algorithm into a sub-optimal one. Typical 

motion estimation and prediction is Kalman-based, but particle filters are also employed 

with success. Various motion models are used, constant velocity or constant 

acceleration being the most common, but not the only ones. Some authors also apply 

Interaction Multiple Models (IMM). In this technique several models are used to 
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represent the same system and propagated in time using the same measurements. Their 

combined information is used to more accurately track objects. 

In (Fod et al., 2002) a people tracking approach is presented. The authors use multiple 

laser range finders placed at waist height in an indoors environment; their algorithm is 

based on simple gradient clustering methods and a nearest neighbor approach to 

perform data association. They model the environment into a background and a 

foreground model in order to obtain measurements belonging to moving objects; blobs 

(clusters) are created from foreground measurements using a simple gradient threshold. 

Their data association method has two distinct phases, a first blob association and a 

second object association. Low level association using nearest neighbor is preformed on 

the blobs from two consecutive scans, while objects characterize higher level objects 

constituted by multiple blobs. A set of heuristic rules are used to associate blobs to 

objects and deal with temporary occlusions. Kalman filter is used to smooth sensor 

noise and predict motion of occluded objects. Simple clustering techniques have some 

relevant shortcomings that will be discussed later, using nearest neighbor data 

association techniques also present some intrinsic problems since the nearest neighbor is 

not always the best association due to occlusions. Their algorithm is not able of coping 

with objects that present higher acceleration than a person. 

 
Fig. 5. Information flow in (Fod et al., 2002). A background filter is used to remove background readings; 

foreground blobs are matched with blobs from the previous scan; then for each blob the Kalman filter 
is updated and a prediction is made. 

(Zhao and Shibasaki, 2005) also make use of several laser sensors to track multiple 

objects in a densely populated wide open environment. The laser sensors are placed at 

ground level and they assume that the only moving objects are people’s feet. The 

authors argue that placing the sensor at ground level is better that at waist level due to 

smaller occlusions. A motion model derived for feet motion is used. Prediction is 



Chapter 2.State of the art  9 

 

Kalman based, using simple gating to define missed associations. A map of the physical 

surroundings is used to filter out static objects and is periodically updated. The authors 

noted that their algorithm was not robust enough to track each individual track; also, 

their work has some limitations since only moving feet are accounted for. Additional 

work by the same research group in the same topic may be found in (Cui et al., 2007) 

and (Cui et al., 2008). 

Moving vehicles are another application that requires multi target tracking. These 

vehicles can be small human scale robots or full scale autonomous cars. (Arras et al., 

2008) presents a technique to perform people tracking using a variation of MHT that 

incorporates adaptive occlusion probabilities. Estimation and prediction is Kalman 

based using constant velocity models. In their experiments the only moving objects 

were legs. 

In (Kobilarov et al., 2006) the authors propose two methods for tracking and following 

persons in an outdoors unstructured dynamic environment. They use a laser range finder 

in conjunction with an omnidirectional camera mounted on a two-wheel dynamically 

balancing Segway Robot Mobile Platform to track and follow persons. Their first 

method uses the camera as the main sensor and the laser to estimate the range to the 

detected object; in the second approach the laser is the main sensor and the camera is 

the secondary. In the second method they use the laser to extract the 3d relative position 

of objects that may correspond to people and use camera information that corresponds 

to the laser object to provide additional measurements. Simple clustering techniques 

were employed to extract objects from laser scans; data association is performed using a 

probabilistic data association filter (PDAF); they employ two motion models, a constant 

velocity model with white noise acceleration and a nonlinear coordinate turn model with 

a state vector containing the target turn rate in addition to the constant velocity model 

state components; they noted that the second model had better performance under 

occlusion. Two levels of gating were applied, a maneuver gate based on the maximum 

possible velocity and acceleration of a moving person, and an elliptical covariance-

based gate. They manage to successfully follow a person in a public park with 

temporary occlusions as long as the occlusion time was small. 

(Petrovskaya and Thrun, 2009) propose a technique to detect and track moving vehicles. 

They model both dynamic and geometric properties of tracked vehicles and employ a 

Bayes Particle filter; by using geometric models of the tracked vehicles they avoid 

simple clustering techniques and some of the problems associated with them like partial 
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occlusion of vehicles (Fig. 6).  Their algorithm was applied in their Junior robot that 

won the second price in the DARPA Urban Grand Challenge. Their system was 

successful in the detection and tracking of moving vehicles even at high speeds. They 

used several laser range finders including a Velodyne laser to perform the tracking; this 

setup is very expensive. Moreover, they do not take into account other road users like 

motorcycles, bicycles or even pedestrians. 

 
Fig. 6. The figure demonstrates the use of geometric models in order to avoid partial occlusions. Purple 

rectangles group together points that have been associated together. In (b) the purple rectangle also 
denotes the geometric vehicle model. Gray areas are objects. Gray dotted lines represent laser rays. 

Black dots denote laser data points. (Petrovskaya and Thrun, 2009) 

In the German University of Ulm several important studies on the topic of multi target 

tracking have been produced over the years. Their main focus has been the application 

of tracking to traffic scenes in the form of driver assistance systems. In (Dietmayer et 

al., 2001) the authors propose a algorithm that implements a model based object 

classification and tracking; this algorithm incorporates a sensor model, dynamic model 

of the car, a street model and a model for each individual object in vicinity of the car. 

They implement simple clustering methods based on the distance between two 

consecutive measurements. To classify objects they test their dimensions against a 

database of known vehicles; their classification is used to set up the initial parameters 

for the motion models; linear Kalman filter is used to perform the tracking. A similar 

approach is used in (Fuerstenberg et al., 2002) but in this work a multi layer LRF is 

used. They also employ an algorithm that is able to avoid the disintegration of objects 

due to partial occlusions. In (Streller et al., 2002) the problem of egomotion is tackled 

using coordinate transformations. Objects are modeled similarly to the previous work 

and extended Kalman filter is used to predict objects position and define gating zones. 

In (Streller and Dietmayer, 2004a) and (Streller and Dietmayer, 2004b) a multi 

hypothesis approach is proposed. In this work they use simple clustering to segment 
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objects, but due to the problems inherent to this kind of approach they generate multiple 

association hypothesis based on models of possible objects (Fig. 7). These models are 

grouped in classes that incorporate pedestrians, cars and other road users; for each of 

these classes they define geometric and dynamic constraints. These constraints are used 

to limit the number of association hypothesis in order to make the algorithm feasible in 

real time. For each hypothesis, a quality and consistency check is performed; objects 

that pass these tests are supplied to another application. The main disadvantage of this 

approach has been described previously; the authors also propose that the number of 

hypothesis can be further limited if contextual knowledge is available; for instance, if 

the course of the road is known, objects beside the road can be ignored and a preferred 

direction for hypotheses can be used these could reduced the number of hypotheses to 

handle. 

 
Fig. 7. Flow chart of the multi hypothesis approach used in (Streller and Dietmayer, 2004b). 

In (Wang et al., 2007) the authors propose an algorithm that fuses the problem of 

simultaneous localization and mapping (SLAM) with detection and tracking of moving 

objects (DTMO). They propose that merging these two problems is beneficial since the 

SLAM problem can beneficiate from a correct identification of moving objects and the 

DTMO will also beneficiate with a more accurate pose estimation given by SLAM. In 
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their work they solve the tracking problem using a similar technique to SLAM without 

using any motion model; this alternative had some problems, as the authors noted, and 

they propose a modified algorithm that incorporates motion models to reduce 

computational time. In many applications, SLAM is of little use and is computationally 

demanding. 

In Portugal there are also several studies in target tracking. In (Castro et al.) an 

algorithm for target tracking and feature extraction in indoors is proposed. Each laser 

scan is segmented using simple clustering and then features are detected using an 

adaptation of the Hough Transformation. To perform the tracking the center position of 

each object is estimated using the Kalman filter with a constant velocity model. A 

system intended to be applied in a collision avoidance system for outdoors vehicles is 

presented in (Mendes et al., 2004). Clustering is made using simple clustering but they 

implement a system that explicitly handles clustering errors for people legs, the system 

joints segmented groups that belong to the same person, and big obstacles like walls. 

Data association is performed using distance criteria as well as other features like 

dimension and orientation of objects. They perform classification of objects based on a 

voting scheme and multiple hypotheses. Tracking is preformed using Kalman filter and 

a constant velocity model just like in the previous work, the time to collision is 

calculated using the Kalman filter estimation. In (Monteiro et al., 2006) a system that 

combines laser and vision to perform tracking and classification is presented. In this 

system the laser is used for tracking and classification and the monocular camera is used 

only for classification. Laser scans are segmented using a Kalman based approach and 

the centroid of the group of laser points is used as the tracking feature. They perform 

data association in two steps, the first associates segments that may belong to the same 

objects in the current laser scan and the second associates current segments with tracked 

objects. The first association is performed using a combination of rectangular and 

ellipsoidal gates. The second association uses the result of the classification algorithm in 

regard to the object size and dynamic behavior. 
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Chapter 3  

Tracking algorithm 

3.1 Overview 

Our algorithm is based on two main tasks, object construction and data association. The 

first task is responsible for the creation of high level objects from the laser scans. 

Basically, several techniques are applied to the raw laser scan in order to extract objects 

information; this is a bottom-up approach. These techniques compromise: preprocessing 

of the laser scan, clustering of points and data reduction. The preprocessing is intended 

to remove the laser sensor noise. Clustering creates groups of points that may belong to 

the same object. The data reduction algorithm reduces the amount of data to handle by 

fitting each object to a group of lines instead of a cluster of points; this is useful because 

the laser data will later be used by other algorithms. When working with 2D laser data 

we must assume that objects can only move in one plane, the laser scan plane. This 

assumption is generally true, but slopes or stairs can invalidate it; any motion in the 

perpendicular coordinate will create noise. Clustering is based on the assumption that 

objects can be separated based in distances between consecutive laser points. This 

assumption is not always valid because in the real world objects can lean to each other, 

when this happens, only a single cluster is created. To overcome this problem a 

fragmentation technique is proposed, it is described in 3.3. 

In order to track objects, these must be maintained in time, so a list of objects to track is 

created. The data association phase is intended to associate objects that are currently 

visible to that ones that belong to our track list. This task is aided by motion prediction 

that is conducted using motion models and linear adaptive Kalman filter. The data 

association phase is critical for the correct tracking of objects, even more that the exact 

estimation of the object position and velocity. Wrong data association can lead to very 

bad velocity estimation, since it causes us to use measurements from different objects. 

We based our algorithm around this task and how it can be improved; we use a motion 
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based gating aided by heuristic rules that improve greatly the performance of the basic 

algorithm. 

The source code for this project was developed in C++ programming language using 

Ubuntu 9.04 operating system. As mentioned before the algorithm is inserted into the 

ATLAS project, as such it was developed under the CARMEN standard (Montemerlo et 

al., 2003). 

 
 Fig. 8. Overview of the tracking algorithm. 
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3.2 Data preprocessing 

Data is received from the sensor as a set of points in polar coordinates. This set is sorted 

by angle starting in the angle 0 45θ = − °  and ending at  225nθ = ° . The matrix d  contains 

the group of n  measurements received at a certain time (1). 

 0 1

0 1

...

...
n

n

r r r
d

θ θ θ
 

=  
 

 (1) 

As stated previously, data obtained with the LRF is prone to high levels of noise; this 

noise can lead to inconstant clustering. Picture two objects at a fixed distance D of each 

other, if the cluster maximum distance E is less that D the two objects are correctly 

identified. Now imagine that the distance D, as measured by the laser range finder is 

D D ε= ±% , then it is possible that, for some value of ε , D%  is less that E, when this 

happens the two objects are falsely identified as just one. The variable ε  is time 

varying as so inconstant clustering may occur. To limit this effect a noise filter was 

applied. The filter was based in a moving average with heuristic additional rules that 

limited its influence in the responsiveness. 

Heuristic Moving Average Filter 

To perform the moving average filter a set of the N  last data matrixes is maintained, 

this set is then averaged together (2) to create the current averaged data matrix. This 

average is recalculated every time new measurements are available. 

 
1

1 k

k i
i k N

d d
N = − +

= ∑%  (2) 

This averaging removes most of the noise from the measurements but also compromises 

the responsiveness of the algorithm. To avoid this problem a simple heuristic rule is 

applied. For all data points in the data matrix (a point ( )d i  is a column of the data 

matrix) if the newest data point is closer to the sensor more than a predefined threshold 

D  we use the newest measurement instead of the average (3). This allows the filter to 

respond with great speed and makes the choice of N  less relevant. 

 
( ),           ( ) ( )

( )
( ),           ( ) ( )

k k k

k k k

d i r i r i D
d i

d i r i r i D
 − <

= 
− ≥

 (3) 

The resulting filtered data matrix is denoted as  d . Cartesian coordinates are then 

calculated for all data points using equations (4) and (5), and annexed to the polar 

coordinates. 
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 cos( )x r θ= ×  (4) 

 sin( )y r θ= ×  (5) 

r  stands for the range value, θ  for the angle, x  and y  are the Cartesian coordinates. 

3.3 Clustering Process 

The clustering step aggregates groups of points that are thought to belong to the same 

object based only on the distance between two consecutive points. This simple 

assumption brings some important problems. One big problem is the one already 

presented in previous chapter, inconstant clustering. Another problem is occlusion. 

Occlusion as a negative influence in clustering in many ways; one of the biggest 

problem is that every time a moving object (object A) starts to occlude another moving 

or stationary object (object B) this suffers from  artificial movement (Fig. 9), the same 

happens when one moving object enters the occlusion zone of another object. This is 

due to the fact that a part of object B is being occluded by object A and so the centroid 

of the object B (as visible by the laser) moves in the direction of the remaining visible 

object. As the occlusion grows bigger the movement is continued and once the object is 

fully occluded the motion estimator and predictor will propagate the artificial 

movement, when the object B becomes visible again its centroid is by now very far 

from the predicted position of the object leading to miss detections. Another problem 

with clustering is that large objects can be segmented into smaller parts by smaller 

objects occluding them as sown in Fig. 10. 

 
Fig. 9. Artificial movement caused by partial occlusions. Object B seems to move has it is occluded by A. 

The LRF is represented as a red triangle, occlusion zones are draw in grey, the visible part of the 
object is draw using a red line and the centre of each object is marked by a black dot. 
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Fig. 10. Poor segmentation of objects, object B is segmented as two distinct objects instead of just one. 

To overcome these problems we propose that occluded points should also be used to 

perform clustering along with new laser data (occlusion avoidance). 

3.3.1 Occlusion avoidance 

Our approach is based on detecting which points have become occluded and then create 

a new data matrix containing the latest data from the sensor and also the points which 

are known to be occluded from past iterations. Points p  are classified as being 

occluded if in the new point in the same direction  θ  is closer to the sensor by more than 

a predefined threshold OD. The occluded data matrix is named  do (6). 

 { }1 1:k k kdo p d r r OD− −= ∈ − >  (6) 

Occluded points are kept until there’s new information in the direction of that particular 

point. We assume that occluded points do not change while being occluded; this is not 

necessarily true because objects are free to move at will. 

In order to aggregate the occluded points with the new data points we must know to 

which object the occluded points belong to; this is a requirement given that we will later 

perform typical gradient clustering on the joint data. The aggregation is performed using 

a first stage clustering that searches for break points in the filtered data matrix d , while 

coping the points to a new data matrix df , if a breakpoint is found, either at the start or 

end of a cluster, the algorithm tests if there’s also a break point using occluded data do , 

if none is found that means that the occluded point belongs to this object (Fig. 11). 

When occluded points belonging to the current cluster are detected we cycle through the 

occluded data matrix in search of additional points, those points are added to the final 

data matrix, when a break point is detected we stop adding points and continue the 
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search in the filtered data matrix. Different search directions are used if the break point 

belongs to the start of the cluster or the end. In the end of this operation we obtain a 

final data matrix df  that contains both the visible filtered data and the occluded data. 

 
Fig. 11. Occlude point detection. Visible points of an object are drawn in black while occluded points are 

drawn in yellow. The final data matrix includes both. It can be seen that there’s a breakpoint in the 
visible data in the crossing from the background object to the foreground object, this breakpoint does 

not exist if we use the occluded data. 

3.3.1.1 Break point detection 

Break points are detected based on the distance between two consecutive points using 

equation (7) (Dietmayer et al., 2001), , 1i iE −  denotes the Euclidian distance between two 

consecutive points and α  the angular resolution of the laser. The constant C0 allows 

and adjustment of the algorithm to noise and strong overlapping of pulses in close 

range. 

 ( ) { }, 1 0 12 cos ,i i i iE C min r rα− −> + ×  (7) 

3.3.2 Final clustering 

Now that we have merged the visible points with the occluded points, we proceed to the 

final clustering, so we perform the same break point detection presented before but 

using the final data matrix  df . Each time a break point is detected, the current cluster is 

terminated and a new one is created. One problem with clustering techniques is that if 

two objects come very close together they appear to merge (the merging distance 

depends on the breakpoint detection, equation (7)), for instance, if a person walks near a 

wall there may be times when no distinction can be made between the wall and the 

person made via clustering. To overcome this problem we decided to implement a 
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fragmentation technique; this technique consists of breaking large clusters in smaller 

ones based only on the cluster size; each time a cluster reaches a certain size, this cluster 

ends and a new one begins. The maximum cluster size was parameterized so that a 

person appears as just one cluster but anything bigger will be fragmented in two or 

more. Using this technique each cluster does not necessarily correspond to a different 

object; we propose that a higher level algorithm would join the clusters that belong to 

the same object (this algorithm was not developed). This algorithm could make use of 

clusters velocity and proximity between groups of clusters or even use geometric 

models. The direct advantage of the fragmentation is that when a person approaches a 

wall both of them will still be different clusters instead of just one (Fig. 12). Another 

advantage of this algorithm is that motion induced by bad clustering is much smaller 

and easier to manage; this is due to the smaller cluster size. 

A cluster only contains information about its start position and end position in the data 

matrix. The end result of the clustering is a set of m  clusters (8). 

 [ ]0 1 mc c c c= L  (8) 

 
Fig. 12. Example of the cluster fragmentation. In the left image, object A is fused with object B due to 

their close proximity. In the right image large objects are fragmented, in this case object A is no 
longer fused object B, as it can be seen by the alternating colours of laser objects. 

3.4 Data reduction 

Given the fact that the laser data will be later used to perform tasks other than tracking, 

a data reduction technique was implemented. Objects in the real world are modeled as 
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groups of line segments; this approach is sufficient to all intended purposes in the 

subsequent tasks. 

IEPF with mean variance 

The process of transforming a cluster of points into a set of lines is based on iterative 

end-point fit (IEPF) presented by (Borges and Aldon, 2004). In this technique a set of 

points { }0 1, , , nP p p p= …  is recursively split in two if a validation criterion is not met.  

In the first step a line is defined (in polar coordinates ,ρ α ) starting in the first point of 

the set 0p  and ending in the last np , then for each point the shortest distance to the line 

is calculated using expression (9). If the average distance  d%  is greater than a predefined 

threshold maxσ  the set is split at the most divergent point and the process starts again to 

each one of the new sets. Polar coordinates are used to describe the lines. 

 cos sind x yρ α α= − −  (9) 

The process is repeated for all m  clusters, resulting in a set of m  objects (10). These 

objects correspond to the currently visible objects; they contain information about the 

shape and position of the object but do not contain any information about past or future 

states. 

 { }0 1, , , mO o o o= …  (10) 

3.5 Motion estimation and prediction 

In this work, objects’ movement estimation and prediction was performed using an 

Adaptive Kalman filter. Estimation allows us to evaluate objects’ velocities and true 

position while prediction allows us to perform localized search for possible matching 

reducing wrong associations. The Kalman filter formalization used was based on 

(Welch and Bishop, 1995). 

3.5.1 Kalman filter 

The Kalman filter addresses the general problem of trying to estimate the state n
kx ∈R  

of a discrete-time controlled process that is governed by the linear stochastic difference 

equation  

 1 1 1k k k kx Ax Bu w− − −= + +  (11) 
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with a measurement m
kz ∈R  that is 

 k k kz Hx v= +  (12) 

The 1kx −  vector represents the previous state; the 1ku −  vector stands for the control 

vector. The random variables kw  and kv  represent the process and measurement noise 

(respectively). They are assumed to be independent (of each other), white, with normal 

probability distributions and with covariance kQ  and kR  respectively, note that both 

covariances can be time varying. 

 ( ) ( )~ 0, kp w N Q  (13) 

 ( ) ( )~ 0, kp v N R  (14) 

The matrix A is the state transition matrix while B is the control matrix. 

The Kalman filter equations can be grouped in two parts, the time update equations 

(predict) and the measurement update equations (correct). The first group is responsible 

for projecting forward the current state and the second group is responsible for 

incorporating the new measurement into the a priori estimate to obtain an improved a 

posteriori estimate. Each state prediction is followed by a subsequent correction. 

To project the state estimation, the equation (15) is used; it makes use of the a posteriori 

estimation 1ˆkx −  from the previous time step, the state transition matrix A and the control 

matrix B and vector to calculate the a priori estimation for the current time step  ̂ kx− . 

 1 1ˆˆk k kAx Bux−
− −= +  (15) 

The error covariance is projected using the previous error covariance, the state transition 

matrix and the process noise covariance matrix (16). 

 1
T

k k kP AP A Q−
−= +  (16) 

The measurement group of equations encompasses the Kalman gain calculation, the 

estimation update with the current measurement and the error covariance update step. 

The blending factor or Kalman gain, K, of the filter is a n m×  matrix that minimizes the 

a posteriori error covariance, it is calculated using equation (17). 

 1( )T T
k k kK P H HP H R− − −= +  (17) 

The a posteriori state estimation ˆkx  is linear combination of the a priori estimate ˆkx−  

and a weighted difference between an actual measurement kz  and a measurement 

prediction ˆ kHx−  (18). 
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 ˆ ˆ ˆ( )k k k k kx x K z Hx− −= + −  (18) 

The error covariance matrix is updated using the previous error, the Kalman gain and 

the measurement sensitivity matrix (19). 

 ( )k k kP I K H P−= −  (19) 

Adaptive Kalman 
In order to overcome Kalman filter’s heavy reliance on modeling accuracies, many 

adaptive methods have been developed. 

Our approach is to adapt the white noise spectral amplitude based on the innovation 

error covariance. The innovation sequence is defined as 

 ˆk k k kd z H x−= −  (20) 

The real covariance of the innovation sequence can be approximated using 

 { } { }
1

0

1 m
T T

k k k k j k j
j

Cov d E d d d d
m

−

− −
=

= = ∑  (21) 

where m is the ‘estimation window size’. This equation is only valid if the innovation 

sequence is assumed to be a time invariant process over the m  steps. 

The white noise spectral amplitude was calculated using the following equation 

 { }ak kCov dσ =  (22) 

Residual noise is also calculated but only to evaluate the estimation performance, the 

residual sequence is defined as 

 ˆk k k kz H xε = −  (23) 

and the covariance of the residual sequence can be approximated using 

 { } { }
1

0

1 m
T T

k k k k j k j
j

Cov E
m

ε ε ε ε ε
−

− −
=

= = ∑  (24) 

This adaptive implementation allows easier tracking of accelerating objects as well as a 

more stable estimation of the position of static ones, and makes the tracking 

performance less dependent of the error matrixes initialization. Other alternatives to 

adaptive Kalman estimation may be found in (Ding et al., 2006; Ding et al., 2007). 

3.5.2 Motion models 

In this work, two motion models were employed, a constant velocity model and a 

constant acceleration model. None of the models fully adjusts to the motion of a person; 

for instance, it’s known that no object can have constant velocity from the beginning of 
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motion to the end, in the beginning the acceleration forces the velocity to increase and 

near the end the velocity decreases; attempts to use model human motion have been 

made in (Zhao and Shibasaki, 2005). The basic constant velocity model was superposed 

with white noise illustrating the highly time varying acceleration. The constant 

acceleration model was also superposed with white noise. Each object motion was 

modeled using two independent models, each model employed two Kalman filters, one 

per each coordinate (x, y) given that both measurements are uncorrelated this separation 

simplifies the process. 

3.5.2.1 Constant velocity CV 

Let s  represent the position of an object and v  its velocity, these variables correspond 

to a single coordinate either x or y; it is known that 

 vs =&  (25) 

So that the position of an object at an arbitrary time t  is given by 

 
0

t

ts vdt= ∫  (26) 

Assuming v  as constant 

 0 ts v t s= ∆ +  (27) 

In discrete time the equation above can be represented by 

 1 1k k ks s v t− −= + ∆  (28) 

 1k kv v −=  (29) 

In equation (29) it is clear that the model is of constant velocity, since the velocity of 

the current iteration is equal to that of the previous. 

Using these two state equations, (28) and (29), one can derive the state vector (30) and 

transition matrix (31) as follows 

 
s

x
v

 
=  

 
 (30) 

 
1
0 1

t
A

∆ 
=  

 
 (31) 

Since only the position of objects is directly observable and it makes no sense to extract 

velocity from differences in positions since this task is performed by the Kalman filter, 

the measurement sensitivity matrix is 

 [ ]1 0H =  (32) 
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Measurement error covariance matrix is defined by equation (33), 2  rσ stands for the 

measurement error variance. The error variance is very hard to define accurately; the 

manufacturer of the laser sensor only provides the error variance for the range 

measurement and not angular error variance. Even if one knew these two variables the 

measurement error variance of the Kalman filter would not correspond to a conversion 

of these errors to Cartesian coordinates. The real error measurement depends on the 

tracking feature defined (which point of the object we are tracking); our feature (3.6.5) 

is highly dependent on the correct cluster definition and the error of each laser point that 

belongs to that particular cluster. The clustering error is very hard to estimate since it 

depends on a complex process and is influenced by factors like occlusions and false 

detections; on the other hand the error of each laser point depends on the polar 

coordinates errors but also on the preprocessing of these points (3.2). As so we opted to 

use an approximation of this error based on the laser manufacturer error and some 

empirical observation of the filter behavior with real data. 
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 (33) 

The process noise covariance matrix (34) was extracted from (Kohler, 1997) and it is 

time varying using the proposed adaptive Kalman method. Given that the motion model 

is a superposition of basic constant velocity model with white noise acceleration this 

equation presents this superposition. 
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σ  ∆ ∆× ∆
=  ∆ 

 (34) 

3.5.2.2 Constant acceleration 

In this model we assume constant acceleration (Wiener-process acceleration model) so 

the state equation results in the following tree equations; equation (35) for the position, 

(36) for the velocity and (37) for the acceleration, once again these equations only 

represent one coordinate, either x or y. 

 
2

1 1 1 2k k k k
ts s v t a− − −

∆
= + ∆ +  (35) 

 1 1k k kv v a t− −= + ∆  (36) 

 1k ka a −=  (37) 
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In equation (37) it is clear that the acceleration is constant since the current acceleration 

is equal to the previous one. Using these equations (35), (36) and (37) the state vector 

results in (38) and the state transition matrix in (39). 

 

s
x v

a

 
 =  
  

 (38) 
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As in the constant velocity model, only the position is directly measured. So the 

sensitivity measurement matrix is as follows. 

 [ ]1 0 0H =  (40) 

Once again the measurement error covariance is obtained from the sensor manufacturer 

and empirical observation. This error matrix suffers from the same issue as the constant 

velocity model, and once again the same solution was used. 
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In our implementation we assume that the acceleration derivative is an independent 

(white noise) process, k ka w=& . The corresponding process noise is presented in the 

following equation (Jilkov, 2009). 
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3.6 Data association 

The most important task of any multi object tracking algorithm is the data association. 

Data association is the task of assigning the correct measurements to the each object. 

Our proposal is to use a motion based gating algorithm to perform this task, the 

algorithm searches for possible matches around the object predicted position. The basic 

assumption made here is that each object will maintain its motion in the next iteration, 

which is not always true. An object can suddenly stop or decide to turn very rapidly, 

and those fast changes in direction are the main cause of error in the algorithm; due to 

them the object that is closest to the target predicted location is not always the correct 

one, thus leading to miss associations. Another big cause of error is when two objects 

move together and if by any reason one of them becomes occluded, due to the object 

proximity and measurement errors, wrong association may occur. 

To overcome some of these problems, the basic algorithm described was overlaid with 

some heuristic rules derived directly from observation of the algorithm with real data. 

3.6.1 Object definition 

In order to perform tracking, a list of tracked objects is maintained (43). 

 { }0 1, , , lTO to to to= …  (43) 

Each object of the list contains a group of variables that define its state (Table 1). Those 

variables indicate the current state of the object as well as past states. They include: 

object position (directly measured, estimated and predicted by the Kalman filter), 

velocity (only estimated), search area (used for object association) and current 

classification; the object previous positions are also stored and used to define the object 

path. 

The object also has multiple motion models used in its motion estimation, associated 

with those models are the error sequences (innovation and residue) and their 

covariances. Each object also contains two timers that indicate the object life time and 

occlusion time. The next table resumes the mentioned fields. 
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Table 1. Object structure containing all data fields. This information is propagated in time for each object 
that is being tracked. 

Object 
Position and velocity Measured, kz  (only position) 

Estimated, ˆkx  

Predicted, 1ˆkx−
+  

Search area Ellipse major axes, ea  
Ellipse minor axes, eb  

Classification Motion based 
Visibility 

Motion models Constant velocity 
Constant acceleration 

Errors Innovation, kd , and covariance, { }kCov d  

Residue, kε , and covariance, { }kCov ε  

Timers Life time 
Occluded time 

Path Past estimated positions in x and y axis 
 

3.6.2 Object association 

In our work, the task of data association is making a correspondence between the 

objects being tracked TO  and those that are currently visible  O , and contain the new 

measurements  kz . 

In the first iteration, all current objects O  are directly added to the list  TO ; then, on 

each iteration, each object belonging to TO  is searched for in current objects  O . If a 

match if found, the TO  object is updated with the corresponding current object 

information, if no match is found, we use the predicted state of object in TO  as the 

current position measurement thus propagating the object motion, and at the same time 

we increment a missed detection counter. All current objects O  that were not matched 

to any list objects are then added to the list  TO . Objects are removed from the list when 

their missed detection counter is over a threshold  ThresholdM . This is the basic principle of 

the association algorithm; several heuristic rules were developed to improve 

performance and are described in the following section. 

3.6.3 Heuristic rules 

In order to improve association of objects, several heuristic rules were added to the 

basic algorithm described above. 
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According to their velocity, objects are classified in two classes: moving objects and 

stationary objects. Objects classification can change if the object velocity changes, 

meaning that a stationary object can become a moving object and a moving object can 

become a stationary one. This classification is preformed with some level of hysteresis 

for stability. 

One current object (from the O  list) cannot be associated with two list objects (from 

TO  list). 

The missed detection threshold ( ThresholdM ) varies dynamically and depends on the 

object life-time; an object with a small life-time disappears in few iterations, objects 

with a long life-time lasts many iterations before being removed from the tracked list. 

This threshold saturates at a predefined maximum value. 

For each TO  object there exist two distinct exclusion zones, the first zone (ezA) is used 

to avoid adding object’s fragments to the TO  list and it is centered at the current object 

position; the second exclusion (ezB) zone avoids associations from nearby objects and is 

centered at the object predicted position, these two zones are visible in Fig. 13. 

Many times, an object can fragment itself; one example is a person walking: when the 

laser is pointed below the hip, the two legs will sometimes appear as one object and 

sometimes as two objects; if the laser is put above that level, the same thing will happen 

but with the hands. To avoid creating false tracks, objects that appear within the ezA of 

one object are not added to the TO  list. 

If two persons walk together there will be a time when the person closest to the laser 

will occlude the other, one typical problem is associating the occluded object with the 

currently visible person or any of its fragments; the goal of the ezB is to avoid this 

problem by not allowing any associations other that the object it belongs to, within its 

radius. 

Both exclusion zones are circular in shape but have different radius; the ezA radius is 

0.8 m and the ezB radius is 0.5 m. This distinction will allow an existing object to get 

near another but will prevent the creation of new objects while they remain in close 

proximity of an existing. 
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3.6.4 Gating of objects 

All list objects have an associated search area that is used to perform the gating of 

measurements. This area is shaped as an ellipse centered at the object predicted position 

as this is the object most probable location (Fig. 13).  

 
Fig. 13. Search area shape and important points. The exclusion zone A is drawn in yellow and centered at 

the current object position; the exclusion zone B is drawn in blue centered at the predicted position. 
The zones presented here correspond to two different time frames (for an easier interpretation), ezA 

belong to the k iteration while ezB to the k+1 iteration. 

The ellipse is aligned with the object estimated velocity as extracted from the Kalman 

estimation. Ellipse axes lengths are dynamic calculated. Axes lengths are governed by 

equation (44) for the axis aligned with eY and (45) for the axis aligned with eX. Each 

axis has a default size ds  that is equal to all objects; the axis length increases with the 

object size s  by a size factor  sf . The occluded time ot  of the object also increases the 

axis length with an occluded factor  of ; both axis use the innovation error covariance 
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from the previous iteration 1kd −  to dynamically change the length using an innovation 

factor  if ; the axis aligned with eX depends also on the lateral error from the previous 

iteration by a lateral factor  lf . The lateral error is the distance from the object position 

to the eY axis of the ellipse, it allows us to detect if the object is turning. 

 2
1kea ds sf s of ot if d −= + × + × + ×  (44) 

 2
1keb ds sf s of ot if d lf le−= + × + + + × + ×  (45) 

The error factor is not equal in both axes and depends on the object velocity; if the 

object is stationary both axes have an equal if  with value 4, meaning that the object can 

equally move in any direction and the search area must be a circle. When the object is 

moving the if  of the axis aligned with eY is 4 while in the other axis the if  is 0.5. 

While the axis aligned with eY is dominated by the covariance error the axis aligned 

with eX is dominated by the lateral error. By affecting the axes in different ways we can 

increase the size of the ellipse only where it is necessary, meaning that if an object is 

turning at a constant rate we don’t increase the length of the ellipse but increase its 

width, if the object is accelerating but not turning we only increase the length of the 

ellipse and not its width. 

The default size of the ellipse must be large enough to allow the object to start moving. 

Both models used cannot incorporate changes in the object behavior while occluded, so 

any deviations from the model will cause the object to be missed when it exits 

occlusion. To mitigate this problem, we increase the ellipse size according to the 

number of iterations whilst the object wasn’t found; this gives room to some deviation 

from the model when the object is occluded. Maximum values have been parameterized 

for the length of the axes. 

3.6.5 Tracking feature 

For each object, only a single point is tracked, this point is intended to represent the 

object position with some invariance to the object rotation and shape deformation. In 

this work, the tracked point is defined as having, in polar coordinates, r equal to the 

minimum r of all object lines end and start points (total of n points) and θ equal to the 

mean of the lines points’ θ. That is, for the n points in a given object, its r and θ are 

given by expressions (46) and (47). This point is somehow a more stable representation 

of the object position than the object centroid. The centroid position converges to the 

part of the object that as more points but laser points are not very well distributed along 
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the object, given that the part of the object that is closer to the laser will have an 

increased number of points as opposed the part far from the laser. This distribution does 

not represent the shape of the object. Our proposal of feature point also fails to represent 

correctly the object but it’s somehow invariant to object rotation and shape changing. 

When an object rotates the extremities will change very slowly as well as the point that 

is closest to the laser; these two features do not present discontinuities. 

 1 2( , , , )nr min r r r= …  (46) 

 1 2( , , , )nmeanθ θ θ θ= …  (47) 

This way of defining the tracking point allows the point to be outside the object area, 

this is not relevant as the only requisite for this point is its continuity in time. 

 
Fig. 14. The tracking point definition can lead to a point that is not inside the object area. 
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Auxiliary tools 

A very important part in any program development is debugging. In order to debug our 

algorithm real data was needed since no simulator was employed. Real data is hard to 

collect given that one must mount an experimental setup in a location with several 

moving targets; hence an algorithm to store data for later use was developed. This 

algorithm would record data sent by the laser module (Fig. 15) into a data file and later 

it would be possible to reproduce back the data to the modules requiring it. As 

previously mentioned this algorithm is inserted into the ATLAS project. In this project 

multiple programs (modules) exchange data (messages) using the CARMEM standard 

and IPC (Simmons, 1991). IPC allows a transparent and easy flow of messages between 

all modules. 

The software consists of two modules, a Recorder module that does the message 

logging and a Player module that performs the playback. The software is able to log 

simple publish-subscribe messages and also more complicated query-server messages 

such as the ones exchanged through a shared memory (when efficiency is required). 

Using this method, modules that subscribe the logged messages do not “know” that they 

are using logged data and not real time data, and thus allows for simulation with real 

data. 

4.1 Recorder 

This module is able to record messages sent by the sensors, not only laser but also 

cameras, inertial units, GPS, etc. Each log consists of several files, a header file and a 

variable number of data files. The header file contains information about which 

messages were received and were they were stored; it also stores generic information 

about the log, a more detailed list of the log fields is present bellow. 
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Table 2. Information contained in each log. There are two main types of data, generic data and messages 
data. 

Log data 
Generic Information Messages 
Time and date Timestamp 
Computer name Id 
Start and end location of the log Start position 
Weather conditions Message Length 
List of sensors used  
List of messages types  
 

Some of the fields are automatically filled by the recorder while others must be input by 

the user. The log header file uses XML format to allow easy expansion and user 

interface. Each time a message is received the recorder marshals it into a byte array, 

following the IPC format of the message, and stores that byte array into a data file. Each 

message type has a different data file, this separation allows a user to select the desired 

message instead of using the entire log. Using the entire log can be difficult because of 

its extensive size, especially when images are recorded (the log can easily reach several 

gigabytes in size). The position in the data file where the message was recorded is saved 

in the header file to allow an easy retrieval of the stored data.  

 
Fig. 15. Message flow to the recorder. Publisher modules send messages to the subscribers; the recorder 

also receives those messages and saves them into a file in the hard drive. 
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4.2 Player 

To use the player module the user specifies which is the log to play; the player parses 

the XML header file and opens all the available data files. Each time a message is to be 

published the player reads the message from the corresponding data file using the start 

position and length of the message; then the byte array is unmarshalled into a message 

structure using the specific message type format and the message is finally published. 

 
Fig. 16. Message flow from the player. The player reads messages from all the data files and publishes 

them to the subscribing modules. 

To allow easy control of message publishing times, a graphic user interface was 

developed (GUI), Fig. 17. This GUI was developed using GTK+ in C++ programming 

language. It presents each message type stored in the log in a different time bar disposed 

vertically in parallel; each message is marked with a vertical line in the time bar against 

a white background. The player has control buttons that allow the user to start the 

playback, pause the playback, step a message forward and step a message backward. 

The step buttons jump to the next or previous message of the selected message type, all 

other messages for other message types that stand in the middle are instantly published 

disregarding their timestamp; the message type is selected by clicking on the 

corresponding time bar. The GUI also allows the user to set the speed at which the 

messages are published, a speed of one means that the messages are published at the 

same rate they were received, a speed lower than one means that messages are 

published at a slower rate and a speed higher than one means that messages are 

published at a faster rate, for instance a speed of two means that messages are played 

twice as fast as they were received. The GUI also allows the user to set the zoom level 

used to display the time bars, this is useful to analyze the logged messages. At the left of 

each time bar there’s a check box, this check box allows the used to stop publishing that 

specific type of message. The current time is displayed using a vertical line with a small 

label on the bottom; this marker can be dragged inside the time bars to jump the log to 

another position. To jump the log a user can also click anywhere in the time bars to 
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move instantly the time. In order to identify which time bar corresponds to which 

message the user must leave the mouse cursor on top of the specific time bar, a text 

tooltip will pop up with the specific message type name. This tool also allows playing 

only a specific zone of the log (A-B, repeat feature); to specify the start (A) and end (B) 

time the user uses keyboard shortcuts. 

 
Fig. 17. GUI of the Player tool. 

 

Zoom control Speed control Control buttons 

Time Marker Various messages types time bars 
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Results 

Several tests with different purposes were performed. The first test evaluates the 

Kalman filter performance on two distinct movements, linear oscillatory motion and 

circular motion. The second test evaluates the tracking of objects that move very near 

other objects, in this case a person walked leaned against a wall. The last experiment 

was intended to evaluate the performance of the algorithm is a real world test. In this 

case the laser was placed in a populated environment. 

5.1 Kalman Filter estimation performance 

In order to evaluate the performance of the Kalman estimation two experiments were 

conducted. In the first one the target moved away from the sensor in the Y axis and then 

back in an oscillatory motion. In the second experiment the target moved in circles 

around a fixed point. The first experiment was intended to test the algorithm against 

drastic speed changes, while the second one tested the algorithm against continued 

constant acceleration. In both experiments the models were tested using the same 

measurement error covariance and applying the proposed adaptive process noise 

covariance scaling method. Real data was used in both experiments; the target object 

was a person; so, in both experiments, the target does not follow exactly the stipulations 

above. 

The Fig. 18 illustrates the oscillatory motion along the Y axis in the first experiment; 

position in the X axis will be omitted given that the motion along that axis is very small. 

In this graphic the measured position is superimposed with the estimated position using 

both motion models. It can be seen that the estimated position does not have the noise 

present in the direct measured positions. The position for the circular motion experiment 

is plotted in Fig. 19. As expected both axis present a similar sinusoidal motion. It can be 

seen that both models have a similar performance, the plotted curves are hard to 

distinguish because they superimpose most of the time. 
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Fig. 18. Position of the target during the experiment in the Y axis. Measured and estimated positions are 

represented for the constant velocity and the constant acceleration model. 

 
Fig. 19. Position in the X and Y axes during the second experiment. 
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5.1.1 Velocity estimation 

Since the velocity was not measured directly only the estimated value is available. In 

the Fig. 20 the oscillatory motion can be clearly seen for the first experiment. The 

graphic belonging to the X axis is not present given that it doesn’t contain any relevant 

information. It can be observed that the constant velocity model performs better that the 

constant acceleration when the object changes direction. It can also be seen that the 

target does not have constant velocity in between direction changes, the small 

oscillations in velocity correspond to the person small oscillations each time a step is 

made. In Fig. 21 we can observe the expected sinusoidal velocity in X and Y 

coordinates for the circular motion; it can also be noted that both models are able to 

catch the small oscillations in the walking motion. 

 
Fig. 20. Velocity along the Y axis in the first experiment; both models are able to follow the oscillatory 

movement but the constant acceleration model is slower to perceive changes in direction. 
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Fig. 21. Velocity in the second experiment along the X and Y axes. 

5.1.2 Innovation sequence / Residue sequence 

In the following graphics (Fig. 22) it can be observed, for the first experiment, that the 

constant velocity model performs slightly better that the constant acceleration model; 

the innovation mean of the CV model is -6.4 and standard deviation is 93.3, while the 

CA innovation model has a mean of -10.3 and standard deviation of 138.9. It can be 

clearly seen in the Fig. 22 that the CA model presents larger errors when the object 

changes direction. In the second experiment no significant differences were found 

between the two models. 
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Fig. 22. Innovation error of both models during the first experiment. 

5.1.3 Adaptive White Noise Amplitude estimation 

Fig. 23 shows that the innovation covariance increases as the object changes its 

direction of motion; this fact is due to the acceleration required to change direction; 

these drastic changes are not modeled by any model and cause the predicted position of 

the object to diverge from the real position. This fact allows the usage of the innovation 

covariance to dynamically change the object search area size; the search area will 

increase when the object changes direction allowing for a bigger prediction error. 

One curious fact that occurs in the CA model is a second spike each time the object 

changes direction; the first spike is the due to the inertia of the model that will attempt 

to continue in the same direction; the second spike occurs because of the feedback in the 

process noise covariance. While the error increases so does the process noise, in 

practice this means that the new measurements are more reliable than the previous, this 

will cause a big jump in the model estimated position; this jump will correct the error 

and even produce some overshoot that is visible as the second spike, this overshoot can 

also be seen in the velocity graphic (Fig. 20) but it is much more evident in this graphic. 

After a few iterations the value stabilizes to the correct value. 
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Fig. 23. Covariance in the Y coordinate using a window size of 10. 

5.1.4 Kalman gains 

In a time constant Kalman filter the gains are stationary but due to the adaptive nature of 

the algorithm implemented in our work, they are not constant. 

The Kalman gains present here show that the filtering is stable. 
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Fig. 24. Gains of the Kalman filters of both models in the Y axis for the first experiment. Only the first 

gain is presented here. 

5.1.5 Conclusion 

It was demonstrated that our constant velocity model performs better in fast direction 

changes that the constant acceleration model. In the circular experiment both models 

had a similar performance. Due to this conclusion and additional observations with real 

data it was decided to only use the constant velocity model in the following 

experiments. 

  

0 5 10 15 20 25 30
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22
Kalman Gains in Y axis

Time (s)

K
al

m
an

 G
ai

n

 

 

CV
CA



44 Chapter 5. Results 

 

5.2 Moving alongside a wall 

In this experiment a person begun in a position far from the wall (Fig. 26) then started 

to move with the shoulder touching the wall (Fig. 25-A); after a while the person started 

to move with its back to the wall leaning on it (Fig. 25-B). Only the CV model was 

used. 

 
Fig. 25. This figure represents the two distinct movements that were made along a fixed object (wall). 

This experiment is only possible due to the fragmentation technique employed, without 

it the person and the wall would be clustered together and one of the targets would be 

lost. 

The algorithm presents some robustness to this kind of movement as it can be seen in 

Fig. 27. While the person walked with the should against the wall the target was always 

tracked correctly; when performing the second movement some wrong associations 

were made, but the algorithm maintained a high level of performance being the wrong 

associations only sporadic. The tracking of background objects (segments belonging to 

the wall) in this circumstances is very difficult and a high level of artificial movement 

as well as wrong associations were verified. In Fig. 27 it can be seen that more than half 

of the objects belonging to the wall were lost or out of place. 
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Fig. 26. Initial positions of objects in the scene. 
correspond to the wall. Objects are marked as red lines, objects’ occlusion areas are drawn in blue, ids 

are drawn in green and red (green for stationary objects and 
are in orange and out of range areas are drawn in grey. Moving objects search areas are drawn in 

green or purple if the object was not found. For static objects their search area was omitted.

Fig. 27. In this frame the person started to move leaned again
objects (belonging to the wall) present some artificial movement and wrong associations but the 

foreground object (person) is still tracked correctly.

  

 
of objects in the scene. The target person has the id 38; ids from 18 to 29 

Objects are marked as red lines, objects’ occlusion areas are drawn in blue, ids 
(green for stationary objects and red for moving objects), object’s tracks 

f range areas are drawn in grey. Moving objects search areas are drawn in 
green or purple if the object was not found. For static objects their search area was omitted.

 
. In this frame the person started to move leaned against the wall. It can be seen that background 

objects (belonging to the wall) present some artificial movement and wrong associations but the 
foreground object (person) is still tracked correctly. 
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id 38; ids from 18 to 29 
Objects are marked as red lines, objects’ occlusion areas are drawn in blue, ids 

object’s tracks 
f range areas are drawn in grey. Moving objects search areas are drawn in 

green or purple if the object was not found. For static objects their search area was omitted. 

st the wall. It can be seen that background 
objects (belonging to the wall) present some artificial movement and wrong associations but the 
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5.3 Algorithm performance

The goal of this experiment was to obse

situation. To accomplish this goal, the laser sensor was placed in the front of a building 

entrance, observing two pathways (

was used. 

Fig. 28. Photo of where the real world 

Fig. 29. Partial laser scan corresponding to the image in 

In the scene, there were some pillars and trees that caused large occlusion in one of the 

pathways. During the experiment, people crossed the two pathways in both directions 

and some entered the building, one person was also observed picking up a b
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Algorithm performance 

The goal of this experiment was to observe the behavior of the algorithm in a real world 

situation. To accomplish this goal, the laser sensor was placed in the front of a building 

observing two pathways (Fig. 28 and Fig. 29). Once again only the CV model 

 
. Photo of where the real world experiment took place. 

 
. Partial laser scan corresponding to the image in Fig. 28. Objects velocity is drawn with a red

arrow. 

In the scene, there were some pillars and trees that caused large occlusion in one of the 

pathways. During the experiment, people crossed the two pathways in both directions 

and some entered the building, one person was also observed picking up a bicycle and 
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of the algorithm in a real world 

situation. To accomplish this goal, the laser sensor was placed in the front of a building 

Once again only the CV model 

Objects velocity is drawn with a red 

In the scene, there were some pillars and trees that caused large occlusion in one of the 

pathways. During the experiment, people crossed the two pathways in both directions 

icycle and 
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moving away. The laser was configured for a maximum range of 15 meters and placed 

at a height of about 1 meter. The whole experiment was recorded with a camera in order 

to obtain ground truth information. The constant velocity motion model was used 

instead of the constant acceleration due to its higher performance. 

Although there were only moving persons in our experiment, the targets were classified 

in two distinct types, A and B. Type A targets are single persons moving, type B are 

multiple persons moving together in the same direction and in close proximity. This 

distinction was done since the results for the two types of targets are fairly distinct. 

In order to measure the performance of the tracking algorithm, the time each target was 

tracked was compared to the time that the target remained in sensor range, and also the 

number of tracking faults was measured for each target. Tracking faults compromise 

targets losses, target id switch, missed detections and false positives. An object is 

considered lost when it becomes occluded and it is not correctly identified once outside 

the occlusion area; in this case, an object may be tracked during all the time that it 

remained in scene (one id before being lost and a different id after), but one tracking 

fault is triggered due to the missed detection. Target ids switch in our experiment only 

occurred in type B targets; an id switch is detected when two targets switch their ids 

without switching place in real world.  

During the experiment, 37 persons belonging to type A were tracked and 26 belonging 

to type B, making a total of 63 persons. The experiment lasted for approximately 17 

minutes. 

The overall tracking performance was good, as described next, and the algorithm 

performed significantly better for type A targets than for type B. Type A targets were 

tracked during 98.5% the time they remained in scene, and 5.4% (two targets) of the 

targets showed tracking faults; it was observed that the only fault that occurred for this 

type of target was target loss. These faults occurred due to large occlusion areas and 

objects that changed speed during occlusion (targets occluded while turning). The 

performance for type B targets was significantly worse, 89.9% of time tracked and 

19.2% of the targets showed tracking faults. The main reason for the worse results is 

that when multiple persons move together the person that is closest to the laser sensor 

will occlude the others during a long time (when the targets move perpendicular to the 

laser, Fig. 30); during this large occlusion time it is very difficult to track the occluded 

persons since they only appear sporadically. If the two persons perform a curve, this 

occlusion will be even more dramatic because the persons will not possess a constant 
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velocity during the occlusion; this behavior typically leads to

targets. In the experiment, targets suffered different kinds of faults being the most 

common the target loss. 

Fig. 30. Long occlusions caused by perpendicular motion of o
object 

Another phenomenon that occurred with multiple persons was the creation of fal

objects; this was due to clustering errors given the close proximity between the targets. 

Clustering errors were also seen in single person, and were due to the height at which 

the laser was placed, near the hip; at this height, peoples’ hands, or other

they may carry, sometimes create new objects; this problem was overcome with the 

heuristic rule that prevents objects from being tracked if there is already a tracked object 

in the vicinity (exclusion zone ezA

Table 3 for both target types. 

Table 3. Performance of the tracking algorithm during the experiment.

Type No. of targets % time tracked
A 37 98.5
B 26 89.9
 

It was observed that the person that picked up the bicycle, and moved away rapidly, was 

successfully tracked for the entire path while in range; this was only possible due to the 
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velocity during the occlusion; this behavior typically leads to the loss of one of the 

targets suffered different kinds of faults being the most 

 
. Long occlusions caused by perpendicular motion of objects. In this case object 67 is occluded by 

object 60 and only appears sporadically. 

Another phenomenon that occurred with multiple persons was the creation of fal

objects; this was due to clustering errors given the close proximity between the targets. 

Clustering errors were also seen in single person, and were due to the height at which 

the laser was placed, near the hip; at this height, peoples’ hands, or other objects that 

they may carry, sometimes create new objects; this problem was overcome with the 

heuristic rule that prevents objects from being tracked if there is already a tracked object 

ezA). The results of the experiment are summarized in 

. Performance of the tracking algorithm during the experiment. 

% time tracked % objects with tracking faults
98.5 5.4 
89.9 19.2 

It was observed that the person that picked up the bicycle, and moved away rapidly, was 

successfully tracked for the entire path while in range; this was only possible due to the 
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one of the 

targets suffered different kinds of faults being the most 

bjects. In this case object 67 is occluded by 

Another phenomenon that occurred with multiple persons was the creation of false 

objects; this was due to clustering errors given the close proximity between the targets. 

Clustering errors were also seen in single person, and were due to the height at which 

objects that 

they may carry, sometimes create new objects; this problem was overcome with the 

heuristic rule that prevents objects from being tracked if there is already a tracked object 

are summarized in 

% objects with tracking faults 

It was observed that the person that picked up the bicycle, and moved away rapidly, was 

successfully tracked for the entire path while in range; this was only possible due to the 
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adaptive Kalman estimation. Under normal estimation, the white noise amplitud

required to track the bicycle could destabilize less dynamic objects; by using the 

proposed adaptive technique, an object with small acceleration (low innovation 

covariance) have small white noise amplitude and very dynamic object (high innovation 

covariance) have large white noise amplitude.

Fig. 31. Extract of the experiment. In this sequence tree
occluded by the pillars

  

adaptive Kalman estimation. Under normal estimation, the white noise amplitud

required to track the bicycle could destabilize less dynamic objects; by using the 

proposed adaptive technique, an object with small acceleration (low innovation 

covariance) have small white noise amplitude and very dynamic object (high innovation 

ance) have large white noise amplitude. 

experiment. In this sequence tree persons move together being periodically 
occluded by the pillars and by one another. 
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adaptive Kalman estimation. Under normal estimation, the white noise amplitude 

required to track the bicycle could destabilize less dynamic objects; by using the 

proposed adaptive technique, an object with small acceleration (low innovation 

covariance) have small white noise amplitude and very dynamic object (high innovation 

 
persons move together being periodically 
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Fig. 32. The person closest to the laser overtook the over two and is now exiting the scene. During 
overtake the person 203 occluded the other two

 

 Chapter 5

closest to the laser overtook the over two and is now exiting the scene. During 
overtake the person 203 occluded the other two, the person 204 occluded the 197 and all tree where 

occluded by static objects. 

5. Results 

 
closest to the laser overtook the over two and is now exiting the scene. During 

, the person 204 occluded the 197 and all tree where 
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Chapter 6  

Conclusions and Future Work 

A laser based object tracking algorithm was developed and successfully implemented. 

The algorithm uses multi stage clustering techniques supported by additional heuristic 

rules and adaptive Kalman estimation to correctly track objects even when occlusion 

happens. As long as objects’ motion remains under the model conditions even long 

occlusion times may be well managed.  

Although the basic operation of the algorithm is relatively simple and performs rather 

poorly by itself, it was demonstrated that a very good performance can be achieved by 

augmenting the algorithm with simple heuristic rules. An adaptive Kalman estimation 

technique was also employed and demonstrated to improve the algorithm robustness to 

deviations from the basic motion model and stabilization of objects. 

To fully test the algorithm, a real word situation was used. The experiment was 

conducted in a populated unstructured environment and good performance was 

achieved. 

Multiple persons moving together still pose some problems that could be overcome with 

the integration of additional lasers or other kind of sensors, such as cameras. Two 

auxiliary tools were also developed; these tools allowed the record and playback of data 

messages. They were widely used in this work to perform debug and test the algorithm, 

their usage proved to be invaluable as these tools are also used by other coworkers in 

the development group to log and record messages from other kind of sensors. 

The algorithm was not tested with the sensor in movement (ego-motion). The ego-

motion can bring several problems to the target tracking; using only the laser data it is 

hard to distinguish the real velocity of the targets from our ego-motion. This problem 

could be overcome if we know our own velocity (using, for instance, an inertial 

measuring device). We assume that if we have precise ego-motion compensation the 

tracking problem will be fairly equal to the static problem and our algorithm will stay 
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valid. This ego-motion compensation can even be assisted using the laser data, by 

means of frame to frame localization. 

One of the main issues of target tracking is the data association; future work will be the 

implementation of more complex association techniques and compare their performance 

and computational cost with the used in this algorithm. Some of the most promising 

techniques are the MHT and the joint probabilistic data association filter (JPDAF). 

Another important step in our algorithm is the clustering process. Our fragmentation 

technique helps making clustering less of a problem but introduces another problem: a 

single object is represented by multiple clusters. We propose that a higher level 

algorithm would join the clusters that belong to the same object. In order to provide 

reliable velocity estimation when tracking road vehicles, our tracking feature (single 

point) needs to take into account the geometry of the object being tracked. We propose 

that the algorithm that would join clusters together could use geometric objects models 

to do so. 

Although motion estimation is not the primordial issue in target tracking, we believe 

that improvements on this could provide an easier data association. None of the two 

motion models presented is able to fully capture the extremely non linear motion of a 

person; as so we can evolve the motion model to be more complex (constant turn rate 

models, human motion models) or even incorporate interacting multiple models (IMM). 

The estimation algorithm can also be upgraded if needed to a non linear estimator like 

the extended Kalman filter or even to a non Gaussian estimator like particle filters. 

Laser data is fairly poor; because of this the tracking is very difficult. If we use extra 

sensors, lasers or cameras, the tracking performance could be improved. The usage of 

additional laser units would reduce occlusions leading to an easier data association, and 

the use of cameras could, for instance, help data segmentation. 
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